3.1.50 \(\int \frac {1}{(a+b \sec ^2(e+f x))^2} \, dx\) [50]

3.1.50.1 Optimal result
3.1.50.2 Mathematica [C] (warning: unable to verify)
3.1.50.3 Rubi [A] (verified)
3.1.50.4 Maple [A] (verified)
3.1.50.5 Fricas [B] (verification not implemented)
3.1.50.6 Sympy [F]
3.1.50.7 Maxima [A] (verification not implemented)
3.1.50.8 Giac [A] (verification not implemented)
3.1.50.9 Mupad [B] (verification not implemented)

3.1.50.1 Optimal result

Integrand size = 14, antiderivative size = 92 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {x}{a^2}-\frac {\sqrt {b} (3 a+2 b) \arctan \left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b}}\right )}{2 a^2 (a+b)^{3/2} f}-\frac {b \tan (e+f x)}{2 a (a+b) f \left (a+b+b \tan ^2(e+f x)\right )} \]

output
x/a^2-1/2*(3*a+2*b)*arctan(b^(1/2)*tan(f*x+e)/(a+b)^(1/2))*b^(1/2)/a^2/(a+ 
b)^(3/2)/f-1/2*b*tan(f*x+e)/a/(a+b)/f/(a+b+b*tan(f*x+e)^2)
 
3.1.50.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.68 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.61 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^4(e+f x) \left (2 x (a+2 b+a \cos (2 (e+f x)))+\frac {b (3 a+2 b) \arctan \left (\frac {\sec (f x) (\cos (2 e)-i \sin (2 e)) (-((a+2 b) \sin (f x))+a \sin (2 e+f x))}{2 \sqrt {a+b} \sqrt {b (\cos (e)-i \sin (e))^4}}\right ) (a+2 b+a \cos (2 (e+f x))) (\cos (2 e)-i \sin (2 e))}{(a+b)^{3/2} f \sqrt {b (\cos (e)-i \sin (e))^4}}+\frac {b ((a+2 b) \sin (2 e)-a \sin (2 f x))}{(a+b) f (\cos (e)-\sin (e)) (\cos (e)+\sin (e))}\right )}{8 a^2 \left (a+b \sec ^2(e+f x)\right )^2} \]

input
Integrate[(a + b*Sec[e + f*x]^2)^(-2),x]
 
output
((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^4*(2*x*(a + 2*b + a*Cos[2*(e 
+ f*x)]) + (b*(3*a + 2*b)*ArcTan[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 
 2*b)*Sin[f*x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin 
[e])^4])]*(a + 2*b + a*Cos[2*(e + f*x)])*(Cos[2*e] - I*Sin[2*e]))/((a + b) 
^(3/2)*f*Sqrt[b*(Cos[e] - I*Sin[e])^4]) + (b*((a + 2*b)*Sin[2*e] - a*Sin[2 
*f*x]))/((a + b)*f*(Cos[e] - Sin[e])*(Cos[e] + Sin[e]))))/(8*a^2*(a + b*Se 
c[e + f*x]^2)^2)
 
3.1.50.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.21, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4616, 316, 397, 216, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a+b \sec (e+f x)^2\right )^2}dx\)

\(\Big \downarrow \) 4616

\(\displaystyle \frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\int \frac {-b \tan ^2(e+f x)+2 a+b}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )}d\tan (e+f x)}{2 a (a+b)}-\frac {b \tan (e+f x)}{2 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )}}{f}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\frac {2 (a+b) \int \frac {1}{\tan ^2(e+f x)+1}d\tan (e+f x)}{a}-\frac {b (3 a+2 b) \int \frac {1}{b \tan ^2(e+f x)+a+b}d\tan (e+f x)}{a}}{2 a (a+b)}-\frac {b \tan (e+f x)}{2 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {2 (a+b) \arctan (\tan (e+f x))}{a}-\frac {b (3 a+2 b) \int \frac {1}{b \tan ^2(e+f x)+a+b}d\tan (e+f x)}{a}}{2 a (a+b)}-\frac {b \tan (e+f x)}{2 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )}}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {2 (a+b) \arctan (\tan (e+f x))}{a}-\frac {\sqrt {b} (3 a+2 b) \arctan \left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b}}\right )}{a \sqrt {a+b}}}{2 a (a+b)}-\frac {b \tan (e+f x)}{2 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )}}{f}\)

input
Int[(a + b*Sec[e + f*x]^2)^(-2),x]
 
output
(((2*(a + b)*ArcTan[Tan[e + f*x]])/a - (Sqrt[b]*(3*a + 2*b)*ArcTan[(Sqrt[b 
]*Tan[e + f*x])/Sqrt[a + b]])/(a*Sqrt[a + b]))/(2*a*(a + b)) - (b*Tan[e + 
f*x])/(2*a*(a + b)*(a + b + b*Tan[e + f*x]^2)))/f
 

3.1.50.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4616
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + b + b*ff^2*x^2)^p 
/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
&& NeQ[a + b, 0] && NeQ[p, -1]
 
3.1.50.4 Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.98

method result size
derivativedivides \(\frac {-\frac {b \left (\frac {a \tan \left (f x +e \right )}{2 \left (a +b \right ) \left (a +b +b \tan \left (f x +e \right )^{2}\right )}+\frac {\left (3 a +2 b \right ) \arctan \left (\frac {b \tan \left (f x +e \right )}{\sqrt {\left (a +b \right ) b}}\right )}{2 \left (a +b \right ) \sqrt {\left (a +b \right ) b}}\right )}{a^{2}}+\frac {\arctan \left (\tan \left (f x +e \right )\right )}{a^{2}}}{f}\) \(90\)
default \(\frac {-\frac {b \left (\frac {a \tan \left (f x +e \right )}{2 \left (a +b \right ) \left (a +b +b \tan \left (f x +e \right )^{2}\right )}+\frac {\left (3 a +2 b \right ) \arctan \left (\frac {b \tan \left (f x +e \right )}{\sqrt {\left (a +b \right ) b}}\right )}{2 \left (a +b \right ) \sqrt {\left (a +b \right ) b}}\right )}{a^{2}}+\frac {\arctan \left (\tan \left (f x +e \right )\right )}{a^{2}}}{f}\) \(90\)
risch \(\frac {x}{a^{2}}-\frac {i b \left (a \,{\mathrm e}^{2 i \left (f x +e \right )}+2 b \,{\mathrm e}^{2 i \left (f x +e \right )}+a \right )}{a^{2} \left (a +b \right ) f \left (a \,{\mathrm e}^{4 i \left (f x +e \right )}+2 a \,{\mathrm e}^{2 i \left (f x +e \right )}+4 b \,{\mathrm e}^{2 i \left (f x +e \right )}+a \right )}+\frac {3 \sqrt {-\left (a +b \right ) b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \sqrt {-\left (a +b \right ) b}+a +2 b}{a}\right )}{4 \left (a +b \right )^{2} f a}+\frac {\sqrt {-\left (a +b \right ) b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \sqrt {-\left (a +b \right ) b}+a +2 b}{a}\right ) b}{2 \left (a +b \right )^{2} f \,a^{2}}-\frac {3 \sqrt {-\left (a +b \right ) b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \sqrt {-\left (a +b \right ) b}-a -2 b}{a}\right )}{4 \left (a +b \right )^{2} f a}-\frac {\sqrt {-\left (a +b \right ) b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \sqrt {-\left (a +b \right ) b}-a -2 b}{a}\right ) b}{2 \left (a +b \right )^{2} f \,a^{2}}\) \(302\)

input
int(1/(a+b*sec(f*x+e)^2)^2,x,method=_RETURNVERBOSE)
 
output
1/f*(-b/a^2*(1/2*a/(a+b)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)+1/2*(3*a+2*b)/(a+ 
b)/((a+b)*b)^(1/2)*arctan(b*tan(f*x+e)/((a+b)*b)^(1/2)))+1/a^2*arctan(tan( 
f*x+e)))
 
3.1.50.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (80) = 160\).

Time = 0.31 (sec) , antiderivative size = 435, normalized size of antiderivative = 4.73 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\left [\frac {8 \, {\left (a^{2} + a b\right )} f x \cos \left (f x + e\right )^{2} - 4 \, a b \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 8 \, {\left (a b + b^{2}\right )} f x + {\left ({\left (3 \, a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + 3 \, a b + 2 \, b^{2}\right )} \sqrt {-\frac {b}{a + b}} \log \left (\frac {{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-\frac {b}{a + b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{8 \, {\left ({\left (a^{4} + a^{3} b\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + a^{2} b^{2}\right )} f\right )}}, \frac {4 \, {\left (a^{2} + a b\right )} f x \cos \left (f x + e\right )^{2} - 2 \, a b \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 4 \, {\left (a b + b^{2}\right )} f x + {\left ({\left (3 \, a^{2} + 2 \, a b\right )} \cos \left (f x + e\right )^{2} + 3 \, a b + 2 \, b^{2}\right )} \sqrt {\frac {b}{a + b}} \arctan \left (\frac {{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt {\frac {b}{a + b}}}{2 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{4 \, {\left ({\left (a^{4} + a^{3} b\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + a^{2} b^{2}\right )} f\right )}}\right ] \]

input
integrate(1/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")
 
output
[1/8*(8*(a^2 + a*b)*f*x*cos(f*x + e)^2 - 4*a*b*cos(f*x + e)*sin(f*x + e) + 
 8*(a*b + b^2)*f*x + ((3*a^2 + 2*a*b)*cos(f*x + e)^2 + 3*a*b + 2*b^2)*sqrt 
(-b/(a + b))*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^2) 
*cos(f*x + e)^2 + 4*((a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^3 - (a*b + b^2)*co 
s(f*x + e))*sqrt(-b/(a + b))*sin(f*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a 
*b*cos(f*x + e)^2 + b^2)))/((a^4 + a^3*b)*f*cos(f*x + e)^2 + (a^3*b + a^2* 
b^2)*f), 1/4*(4*(a^2 + a*b)*f*x*cos(f*x + e)^2 - 2*a*b*cos(f*x + e)*sin(f* 
x + e) + 4*(a*b + b^2)*f*x + ((3*a^2 + 2*a*b)*cos(f*x + e)^2 + 3*a*b + 2*b 
^2)*sqrt(b/(a + b))*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)*sqrt(b/(a + 
b))/(b*cos(f*x + e)*sin(f*x + e))))/((a^4 + a^3*b)*f*cos(f*x + e)^2 + (a^3 
*b + a^2*b^2)*f)]
 
3.1.50.6 Sympy [F]

\[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\int \frac {1}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \]

input
integrate(1/(a+b*sec(f*x+e)**2)**2,x)
 
output
Integral((a + b*sec(e + f*x)**2)**(-2), x)
 
3.1.50.7 Maxima [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.15 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=-\frac {\frac {b \tan \left (f x + e\right )}{a^{3} + 2 \, a^{2} b + a b^{2} + {\left (a^{2} b + a b^{2}\right )} \tan \left (f x + e\right )^{2}} + \frac {{\left (3 \, a b + 2 \, b^{2}\right )} \arctan \left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{{\left (a^{3} + a^{2} b\right )} \sqrt {{\left (a + b\right )} b}} - \frac {2 \, {\left (f x + e\right )}}{a^{2}}}{2 \, f} \]

input
integrate(1/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")
 
output
-1/2*(b*tan(f*x + e)/(a^3 + 2*a^2*b + a*b^2 + (a^2*b + a*b^2)*tan(f*x + e) 
^2) + (3*a*b + 2*b^2)*arctan(b*tan(f*x + e)/sqrt((a + b)*b))/((a^3 + a^2*b 
)*sqrt((a + b)*b)) - 2*(f*x + e)/a^2)/f
 
3.1.50.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.24 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=-\frac {\frac {{\left (\pi \left \lfloor \frac {f x + e}{\pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (b\right ) + \arctan \left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b + b^{2}}}\right )\right )} {\left (3 \, a b + 2 \, b^{2}\right )}}{{\left (a^{3} + a^{2} b\right )} \sqrt {a b + b^{2}}} + \frac {b \tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a + b\right )} {\left (a^{2} + a b\right )}} - \frac {2 \, {\left (f x + e\right )}}{a^{2}}}{2 \, f} \]

input
integrate(1/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")
 
output
-1/2*((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a* 
b + b^2)))*(3*a*b + 2*b^2)/((a^3 + a^2*b)*sqrt(a*b + b^2)) + b*tan(f*x + e 
)/((b*tan(f*x + e)^2 + a + b)*(a^2 + a*b)) - 2*(f*x + e)/a^2)/f
 
3.1.50.9 Mupad [B] (verification not implemented)

Time = 20.41 (sec) , antiderivative size = 2056, normalized size of antiderivative = 22.35 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\text {Too large to display} \]

input
int(1/(a + b/cos(e + f*x)^2)^2,x)
 
output
atan((((((2*a^4*b^4 + 6*a^5*b^3 + 4*a^6*b^2)*1i)/(2*(2*a^4*b + a^5 + a^3*b 
^2)) - (tan(e + f*x)*(32*a^4*b^5 + 80*a^5*b^4 + 64*a^6*b^3 + 16*a^7*b^2))/ 
(8*a^2*(2*a^3*b + a^4 + a^2*b^2)))/(2*a^2) + (tan(e + f*x)*(20*a*b^4 + 8*b 
^5 + 13*a^2*b^3))/(4*(2*a^3*b + a^4 + a^2*b^2)))/a^2 - ((((2*a^4*b^4 + 6*a 
^5*b^3 + 4*a^6*b^2)*1i)/(2*(2*a^4*b + a^5 + a^3*b^2)) + (tan(e + f*x)*(32* 
a^4*b^5 + 80*a^5*b^4 + 64*a^6*b^3 + 16*a^7*b^2))/(8*a^2*(2*a^3*b + a^4 + a 
^2*b^2)))/(2*a^2) - (tan(e + f*x)*(20*a*b^4 + 8*b^5 + 13*a^2*b^3))/(4*(2*a 
^3*b + a^4 + a^2*b^2)))/a^2)/((((((2*a^4*b^4 + 6*a^5*b^3 + 4*a^6*b^2)*1i)/ 
(2*(2*a^4*b + a^5 + a^3*b^2)) - (tan(e + f*x)*(32*a^4*b^5 + 80*a^5*b^4 + 6 
4*a^6*b^3 + 16*a^7*b^2))/(8*a^2*(2*a^3*b + a^4 + a^2*b^2)))*1i)/(2*a^2) + 
(tan(e + f*x)*(20*a*b^4 + 8*b^5 + 13*a^2*b^3)*1i)/(4*(2*a^3*b + a^4 + a^2* 
b^2)))/a^2 + (((((2*a^4*b^4 + 6*a^5*b^3 + 4*a^6*b^2)*1i)/(2*(2*a^4*b + a^5 
 + a^3*b^2)) + (tan(e + f*x)*(32*a^4*b^5 + 80*a^5*b^4 + 64*a^6*b^3 + 16*a^ 
7*b^2))/(8*a^2*(2*a^3*b + a^4 + a^2*b^2)))*1i)/(2*a^2) - (tan(e + f*x)*(20 
*a*b^4 + 8*b^5 + 13*a^2*b^3)*1i)/(4*(2*a^3*b + a^4 + a^2*b^2)))/a^2 + ((3* 
a*b^3)/2 + b^4)/(2*a^4*b + a^5 + a^3*b^2)))/(a^2*f) + (atan(((((tan(e + f* 
x)*(20*a*b^4 + 8*b^5 + 13*a^2*b^3))/(2*(2*a^3*b + a^4 + a^2*b^2)) - ((-b*( 
a + b)^3)^(1/2)*((2*a^4*b^4 + 6*a^5*b^3 + 4*a^6*b^2)/(2*a^4*b + a^5 + a^3* 
b^2) - (tan(e + f*x)*(-b*(a + b)^3)^(1/2)*(3*a + 2*b)*(32*a^4*b^5 + 80*a^5 
*b^4 + 64*a^6*b^3 + 16*a^7*b^2))/(8*(2*a^3*b + a^4 + a^2*b^2)*(3*a^4*b ...